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Using analytical calculations and computer simulations, we consider both the lateral diffusion of a mem-
brane protein and the fluctuation spectrum of the membrane in which the protein is embedded. The membrane
protein interacts with the membrane shape through its spontaneous curvature and bending rigidity. The lateral
motion of the protein may be viewed as diffusion in an effective potential, hence, the effective mobility is
always reduced compared to the case of free diffusion. Using a rigorous path-integral approach, we derive an
analytical expression for the effective diffusion coefficient for small ratios of temperature and bending rigidity,
which is the biologically relevant limit. Simulations show very good quantitative agreement with our analytical
result. The analysis of the correlation functions contributing to the diffusion coefficient shows that the corre-
lations between the stochastic force of the protein and the response in the membrane shape are responsible for
the reduction. Our quantitative analysis of the membrane height correlation spectrum shows an influence of the
protein-membrane interaction causing a distinctly altered wave-vector dependence compared to a free mem-
brane. Furthermore, the time correlations exhibit the two relevant time scales of the system: that of membrane
fluctuations and that of lateral protein diffusion with the latter typically much longer than the former. We argue
that the analysis of the long-time decay of membrane height correlations can thus provide a new means to
determine the effective diffusion coefficient of proteins in the membrane.
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I. INTRODUCTION

Biomembranes are ubiquitous in life, mainly providing
spatial compartmentalization. However, a membrane should
not be viewed as a mere barrier between different compart-
ments, but serves as a place where a whole variety of func-
tions may take place, such as ion or protein transport, signal
transduction, etc. �1�. These functions come about through
proteins that move along the membrane. From a physical
perspective, the lateral diffusion of the proteins and the shape
changes of the membrane caused upon insertion of proteins
are among the most interesting issues of these systems.

The recent progress in experimental techniques to mea-
sure lateral diffusion coefficients, such as fluorescence corre-
lation spectroscopy �2�, single-particle tracking �3�, or fluo-
rescence recovery after photobleaching �4�, has revealed that
many of the functions performed by proteins are crucially
influenced by the diffusive behavior of the proteins �5�. Apart
from the obvious biological relevance, lateral protein diffu-
sion is also very challenging from a theoretical perspective:
compared to diffusion in the bulk, there is a subtlety in the
hydrodynamic equations describing the mobility in a two-
dimensional fluid since the solution of the two-dimensional
Navier-Stokes equation diverges. In order to overcome this
so-called Stokes’ paradox �6�, Saffman and Delbrück �7�
considered the mobility of a very thin, rigid object in a nar-
row almost two-dimensional fluid layer that is surrounded on
both sides by a further liquid. This work has received a lot of
attention since it is relevant for lateral protein diffusion.
While some experiments support their result �8–10�, more
recent observations for proteins cannot be explained by their
theory �11,12�.

Another aspect that makes diffusion interesting, particu-
larly in membranes, is that the membrane itself is subject to
thermal fluctuations; thus the shape of the membrane is also

constantly changing. Methods to analyze shape fluctuations
of membranes include off-specular x-ray scattering �13� and
video microscopy �14,15�. In the latter method, the contour
of a vesicle is detected from optical microscopy records
taken at successive time steps. The changes in the contour
provide information on the fluctuation spectrum that is used
to deduce effective bending rigidities or surface tensions. In
a very recent study, Rodríguez-García et al. �16� identified
the influence of the bilayer nature of a membrane as theoret-
ical calculations �17� have previously predicted. The influ-
ence of the density of inclusions embedded in a lipid mem-
brane on the effective bending rigidity was studied by
Vitkova et al. �18�. In this work, the peptide alamethicin was
used as the inclusion. Bassereau and co-workers studied
more complicated systems consisting of membranes with in-
serted proteins and were able to study the altered fluctuation
spectrum of a membrane upon activation of the inserted bac-
teriorhodopsin proteins �19,20�.

Theoretically, a bare membrane is well described as a
continuous two-dimensional sheet with a bending rigidity
and an effective surface tension. This model has been very
successful in explaining a whole variety of experimentally
observed membrane morphologies �21�. Likewise, mem-
brane shape fluctuations are well captured by this simple
model as shown in video microscopy experiments �14,15�.
The insertion of additional proteins in a membrane requires
an extension of this simple continuous model to include the
local interaction of a protein with the membrane. While the
influence of thermal membrane fluctuations on the interac-
tion between inclusions has previously been considered in
several studies �22,23�, the influence on lateral diffusion or
the altered membrane height correlations is much less stud-
ied. In previous work involving both analytical calculations
and simulations, we and others analyzed the geometric effect
of measuring the diffusion coefficient from the projected
path of the protein �24–26�. While these studies only in-
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cluded free diffusion, the lateral diffusion of an inclusion that
interacts with the membrane shape is considered in recent
studies �24,27–30�. If the membrane shape fluctuations were
not influenced by the protein, the effective diffusion coeffi-
cient would be increased compared to the free diffusion co-
efficient �24,27,29�. However, this simplifying assumption
represents too severe an approximation. By including the
backaction of the protein on the membrane fluctuations, Naji
et al. �30� showed that in equilibrium, the effective lateral
diffusion coefficient is reduced for which they were able to
give an approximate expression. Parts of the current work are
complementary to their study.

On a more collective level, the interaction between mem-
brane and embedded proteins can cause morphological
changes. Leibler �31� studied a model with a protein density
field that induces a spontaneous curvature capable of causing
an instability of the membrane. He finds two characteristic
time scales for membrane fluctuations, with one of them po-
tentially unstable in a certain wave-vector range. Related
work by Bivas and Méléard �32� on bending elasticity and
fluctuations of spherical bilayer vesicles with additives re-
veals an additional characteristic time scales. In their work,
the bilayer membrane comprises two individual sheets such
that the third time scale results from the friction between the
two layers.

Divet et al. �33� studied an extension of Leibler’s work
that allows an exchange of proteins between the membrane
and the surrounding fluid. Depending on the considered
length scale, they find several relevant time scales for mem-
brane height and density fluctuations. Surprisingly, this rel-
evance of different time scales in membrane height correla-
tions has, to the best of our knowledge, not been previously
observed in experiments.

In the present work, we study the two interrelated effects
following from a protein-membrane interaction: the reduc-
tion of the lateral diffusion coefficient of the protein and the
modifications of the static and time-dependent height corre-
lation functions of the membrane. In our study, the additional
energy caused by the insertion of the protein arises from an
effective bending rigidity and spontaneous curvature of the
protein. The dynamics of our system is dominated by two
processes: the shape fluctuations of the membrane and the
lateral diffusion of the protein. Taking into account the hy-
drodynamic interaction of a membrane with the surrounding
fluid, we are able to derive a Langevin equation for the dy-
namics of the membrane shape, which becomes a function of
the protein’s position. Lateral diffusion of the protein is cap-
tured by another Langevin equation that takes into account
the shape of and the interaction with the membrane. These
two coupled equations of motions are the starting point for
our analytical calculations and their numerical integration
make out our simulation scheme.

Using a systematic approach, we present two main results
for lateral diffusion: we argue that in equilibrium, the effec-
tive lateral diffusion coefficient of a protein that interacts
with the membrane shape is universally decreased compared
to the free diffusion coefficient applicable if no interactions
were present. Beyond this general argument we, furthermore,
derive an explicit expression for the effective diffusion coef-
ficient of a protein with spontaneous curvature and bending

rigidity by applying a path-integral approach. To lowest or-
der, our expression agrees with that recently derived by Naji
et al. �30� through an estimate of the power loss of the dif-
fusing protein in the limit that the membrane shape minimiz-
ing the system’s energy instantaneously tracks the protein’s
position. Our approach reveals that their expression resulting
from a phenomenological approximation formally corre-
sponds to the lowest order of an expansion in ����−1 using
���kBT�−1, with temperature T, Boltzmann’s constant kB,
and bending rigidity � of the membrane.

We compare results of our simulation scheme to this
lowest-order expression and find good quantitative agree-
ment. Several correlation functions contribute to the effective
diffusion coefficient. The quantitative analysis of these con-
tributions from our simulation results shows that the correla-
tions between the response of the membrane and the preced-
ing stochastic force acting on the protein effectively reduce
the diffusion coefficient, while all other contributions would
cause an increase.

Concerning the altered membrane spectrum, we analyti-
cally develop an approximate expression for the height cor-
relation function applicable for equal bending rigidity of pro-
tein and membrane. In the limit of slow protein diffusion
compared to membrane fluctuations, we find two time re-
gimes for the decay of height correlations: at small times, the
decay is dominated by membrane dynamics, while the diffu-
sive time scale of the protein becomes the only relevant time
scale at later times. Since we find this feature in the simula-
tions not only for equal bending rigidities of membrane and
protein, we suggest that the experimental analysis of the late
decay of dynamical membrane height correlations can pro-
vide a means to determine the effective diffusion coefficient
of proteins in the membrane. To corroborate this argument,
we use our model to give a rough estimate suggesting that
the effect should be visible in realistic systems.

The paper is organized as follows. In the next section, we
present the model of the system and develop the equations of
motion both for the protein and the membrane. In the limit of
small ratios of temperature and bending rigidity, these are
then used in Secs. III A and III B to develop an exact ana-
lytical expression for the effective lateral diffusion coeffi-
cient and for the dynamical membrane height correlations,
respectively. In Sec. IV A, we briefly explain our simulation
scheme and motivate the parameters used in the simulations.
In Sec. IV B, we show that the derived analytical expression
for the effective diffusion coefficient shows good agreement
with simulations using parameters of typical experiments.
We, furthermore, quantitatively analyze the correlation func-
tions that contribute to the diffusion coefficient. The mem-
brane height correlations are compared to our analytical ex-
pressions in Sec. IV C. In Sec. V, we show the determination
of the effective diffusion coefficient from the late time decay
of height correlations and discuss that this procedure should
be experimentally feasible in realistic system. We finally
close with some conclusions.

II. MODEL

In our model, we consider a single diffusing inclusion in a
membrane with bending rigidity � that we describe in the
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Monge gauge. The small inclusion with radius ap has a spon-
taneous curvature Cp and its stiffness may differ from that of
the membrane by a factor of �. The energy of the system of
size L2 may be expressed by

H�h,R� =
�

2
�

L2
d2r���r

2h�2 + �ap
2G�r − R�

�����r
2h − Cp�2 − ��r

2h�2�� , �1�

with the height function h�r� that quantifies the distance

between the membrane and the position r on a flat refer-
ence plane. The particle position projected onto this plane is
given by R. The function G�r−R� defines a weighting func-
tion of the particle that must fulfill the normalization
	L2d2rG�r�=1. In our simulations, we set the weighting
function to a Gaussian G�r�= ��ap

2�−1exp�−r2 /ap
2� such that

the transition from membrane to particle is smooth. If we use
the Fourier expansions h�r�= 1

L2 
kh�k�exp�ik ·r� and h�k�
=	L2d2rh�r�exp�−ik ·r�, the Hamiltonian becomes

H�h�k�,R� =
�

2� 1

L2

k

k4h�k�h�− k� + �� − 1�
�ap

2

L4 

k,k�

k2k�2G�− k − k��ei�k+k��·Rh�k�h�k�� + 2�Cp

�ap
2

L2 

k

k2G�− k�eik·Rh�k��
+ ��ap

2Cp
2. �2�

From this Hamiltonian, it is in principle possible to
numerically calculate the equilibrium height correlations
h�k�h�k��� applying methods used in �34�. While these
methods are restricted to time-independent equilibrium quan-
tities, our simulation scheme, described later in the paper,
allows us to not only obtain these quantities but also time-
dependent information. For the special case that both the
protein and the membrane have the same bending rigidity,
i.e., �=1, the height correlations are given by

h�k�h�− k�� =
L2

k4� 1

��
+ ��ap

2Cp
2G�k�G�− k�� , �3�

with the ratio of protein area to system size

� � �ap
2/L2. �4�

While Eq. �3� is derived for a single protein on the mem-
brane, the extension to several noninteracting proteins would
lead to the same result with � resembling the overall area
density of the proteins. Compared to the free membrane
without protein, whose height correlations are given by the
first term, the protein gives rise to an additive term that de-
pends on the various parameters characterizing the particle.
Following previous studies �31–33�, it is possible to define a
k-dependent effective bending rigidity �eff�k� such that the
spectrum of the membrane has the form of a protein-free
membrane h�k�h�−k��free=L2 / ���eff�k�k4�. This leads to

�eff�k�
�

= �1 + ����ap
2Cp

2G�k�G�− k��−1. �5�

Note that the addition of the protein in the membrane always
leads to a reduction of the effective bending rigidity of the
system as has been pointed out previously when inclusions
are inserted into a membrane �31�. However, the effective
bending rigidity cannot become negative, hence the mem-
brane not unstable.

Neglecting any geometric effects caused by the projection
of the protein path, which we have previously determined to
be rather small for realistic membranes �24�, the diffusive
motion of the protein and the thermal fluctuations of the
membrane, i.e., the dynamics of the height modes h�k , t�, are
appropriately described by the following coupled Langevin
equations:

Ṙ�t� = − �p�RH + ��t� , �6�

ḣ�k,t� = − 	�k�

H


h�k,t�
+ ��k,t� , �7�

with the stochastic forces ��t� and ��k , t� that are related to
the mobilities �p�Dp /kBT of the protein �35� and 	�k� of
the membrane, respectively, via the fluctuation-dissipation
theorems

�l�t�� = 0,

�l�t��m�t��� = 2Dp
l,m
�t − t�� �8�

and

��k,t�� = 0,

��k,t���k�,t��� = 2kBT	�k�L2
k�,−k
�t − t�� . �9�

The mobility of the membrane takes into account the dynam-
ics of the membrane caused by the surrounding fluid. A hy-
drodynamical derivation involving the Oseen tensor leads to
a mobility of 	�k�= �4k�−1 for the undulations k�0, with
the viscosity  of the surrounding fluid �21�. For k=0, i.e.,
the center of mass movement of the membrane, we set 	�k
=0�=0 since it does not influence the properties of interest in
our study.
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III. ANALYTICAL APPROACH

A. Diffusion coefficient Deff

We derive an analytical expression for the effective diffu-
sion coefficient Deff by exploiting that for biomembranes
typically ����−1�1. We first determine the minimum of the
energy �2�. The condition� �H

�h�k� �ĥk
=0 leads to the equation

0 = k2ĥ−k + �� − 1��

k�

k�2G�k + k��exp�i�k + k�� · R�ĥk�

+ �Cp�ap
2G�k�exp�ik · R� �10�

for the height modes ĥk that minimize the energy. Using the

ansatz ĥk=
Bk

k2 exp�−ik ·R�, the energy is minimal for

Bk = − �Cp�ap
2


q
Mk,q

−1 G�q� , �11�

with the matrix

Mk,q � 
k,q + �� − 1��G�q + k� . �12�

Inserting this result into the Hamiltonian shows that the en-
ergy minimum does not depend on the particle position as
expected from the isotropy of the particle position.

The first question we will address is whether the effective
diffusion constant is larger or smaller than the free diffusion
coefficient Dp applicable without coupling, i.e., �=0. The
degrees of freedom in the Hamiltonian �2� are given by the
membrane modes h�k� and the position R of the protein. Due
to the appearance of the membrane modes up to quadratic
order in the Hamiltonian, the thermal averages �h�k��2� re-
main bounded. The position of the protein, however, is not
bounded, such that diffusive motion is possible. Effectively,
the protein moves in a time-dependent periodic potential
given by the height modes h�k , t�. Diffusion in periodic po-
tentials has been previously considered in a large number of
studies. If the particle is only subject to the potential and no
other external force, it is easily shown that the effective dif-
fusion coefficient of the particle is always smaller than or
equal to the free diffusion coefficient �36,37�. Thus we con-
clude that the effective diffusion coefficient Deff of a protein
whose interaction with the membrane depends on the shape
obeys

Deff � Dp �13�

in all situations without external driving forces.
While we know that the diffusion coefficient is in general

reduced due to the membrane, we will derive an explicit
analytical expression to quantify the effect for our model, the
validity of which we will discuss and analyze through simu-
lations. A quick glance at the Langevin equations �6� and �7�
shows that they are highly nonlinear such that the exact so-
lution is not straightforward. In order to develop an expres-
sion for Deff, we must, therefore, apply certain approxima-
tions.

In a path-integral description �38�, the probability distri-
bution P of the paths R�t� of the diffusing protein and of the
height modes h�k , t� follows from the weight of noise fluc-
tuations and is given by the functional

P�R�t�,h�k,t�� � exp�−
1

2kBT
�

0

t

d�L�R���,h�k,���� ,

�14�

with the function

L�R,h�k�� =
1

2�0
�Ṙ + �0�RH�2

+ 

k

1

2	�k�
�ḣ�k� + 	�k�

�H
�h�k�

�2

. �15�

If we introduce the deviation

yk � h�k� − ĥk�R�t�� �16�

of the membrane shape from the instantaneous membrane
shape that minimizes the energy of the system the Hamil-
tonian may approximately be written in the form

H = H0 +
1

2 

k,k�

yk� 
2H

h�k�
h�k��

�
ĥk�R�

yk�, �17�

where H0�H�ĥ�t�� is the energy minimum. Since the sec-
ond functional derivative of the energy with respect to the
height is proportional to the bending rigidity �, it is conve-
nient to define

��Vk,k��R� �� 
2H

h�k�
h�k��

�
ĥk�R�

. �18�

Up to total derivatives leading only to boundary terms, we
can then rewrite the function L as a function of R and yk,

L�R,y�k�� =
1

2�0
Ṙ2 + 


k

1

2	�k�
���Ṙ · �R�ĥk�2

+ 2ẏk
��Ṙ · �R�ĥk + �ẏk�2�

+
1

2��0����2�

k,k�

�yk�RVk,k�yk�

− ykVk,k��Rĥk���2
+

1

2
����2


k
	�k�

��

k�

Vk,k�yk��2� . �19�

To determine the effective mobility of the particle, it would
be necessary to integrate out the deviation y in the probabil-
ity distribution P. Since this cannot be done explicitly, we
employ a saddle-point approximation, i.e., we replace all the
possible paths yk�t� with the path ỹk�t� that minimizes the
function L and hence contributes to the probability distribu-
tion �14� the most. The path ỹk�t� follows from the Euler-
Lagrange equations
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d

dt

�L

� ẏ̃k

−
�L

� ỹk
= 0. �20�

As before, we assume that only small variations ỹk in the
height are relevant allowing us to linearize the resulting dif-
ferential equations

1

	�k�
ÿ̃k�t� − ����2


k�

	�k���

k�

Vk�,k�ỹk��Vk�,k

− �0����2� 

k�,k�

�Rĥk�Vk�,k�ỹk��

k�

Vk,k��Rĥk�

= −
1

	�k�
d2ĥk�R�t��

dt2 �21�

or, in a simplified notation,

ÿ̃k�t� − ����2 

k,k�

Ak,k�ỹk� = −
d2ĥk�R�t��

dt2 , �22�

using the positive-definite matrix Ak,k�. The homogeneous
solution of this equation is a simple relaxation on time scales
proportional to ����−1 and plays, therefore, a minor role for
large values of ��. We are now interested in the significance
of the bending rigidity � on the inhomogeneous solution. To
this end, we drop all dependencies of k in Eq. �22� as though
the system only had a single wave mode without altering the
order of ��. The inhomogeneous solution is then given by

ỹinh�t� =
1

2���A
�

0

t

d��e���A�t−�� − e���A��−t��
d2ĥ

d�2 . �23�

For large �� and slow protein diffusion, the membrane shape

minimizing the energy ĥ�R�t�� only weakly changes on the
relaxation-time scale. Hence, membrane shape deviations ỹk
are of the order O�����−2�. Inserting this result into Eq. �19�
and keeping only leading orders of ����−1, we arrive at

L�R, ỹ�k�� =
1

2�0
Ṙ2 + 


k

1

2	�k�
��Ṙ · �R�ĥk�2 + O�����−2� .

�24�

It is now possible to identify an effective diffusion coeffi-
cient Deff for the diffusing protein from the prefactor of the

Ṙ2 term

D0

Deff
= 1 + 


k

�0

	�k�
��Rĥk�2 = 1 + 


k

�0

	�k�
BkB−k

k2 , �25�

with Bk from Eq. �11� and using isotropy in the x and y
directions of the system. This systematic derivation of an
analytical expression for the diffusion of a protein that inter-
acts with the membrane shape constitutes our first main re-
sult. The analysis of experiments with both model and bio-
logical membranes shows that ����−2 is typically smaller
than 0.01, hence, sufficiently small to expect a wide applica-
bility of this expression. The first line of this expression
agrees with the result of Naji et al. �30�. In their derivation,

they apply an adiabatic approximation assuming the mem-
brane shape to instantaneously follow the path of the protein.
The effective diffusion coefficient is then derived from an
estimation of the power loss of the diffusing particle. Our
derivation identifies their approximate result as the lowest
order of an expansion in ����−1.

After the general solution for the effective diffusion coef-
ficient, we will now turn to the special case of a protein with
a weighting function expressed through Dirac’s delta func-
tion G�R−r�=
�R−r�. In this case, the Fourier transform of
G is independent of the wave vector k, such that G�k�=1.
This leads to the height mode

ĥk�R� = −
1

k2

�Cp�ap
2

1 + �� − 1��

k�

1
exp�− ik · R� , �26�

minimizing the free energy H. The resulting energy mini-
mum is

H�ĥ� =
�

2
��ap

2Cp
2 1

1 + ���

k

1�/�1 − �

k

1� . �27�

Following the above procedure but now inserting the special
choice for the weighting function leads to the effective dif-
fusion coefficient

D0

Deff
= 1 + 


k

�0

	�k�
1

k2

�2Cp
2�2ap

4

�1 + �� − 1���

k�

1��2 . �28�

In the next step, we will evaluate the sums over all possible
wave vectors k. On one hand, the smallest value of the x or
y component is defined by the system size, kx,min=2� /L, and
is thus approximately zero for large systems. On the other
hand, the largest value kx,max=2� /ac is limited by a micro-
scopic cutoff length ac that corresponds to the size of the
lipids. Thus the expression �
k1 in the denominator of Eq.
�28� leads to �ap

2 /ac
2 using the definition of � given in Eq.

�4�. The evaluation of the other sum over k depends on the
specific form of the membrane mobility. Using 	�k�
= �4k�−1 makes the evaluation of 
kk−1 necessary, such that
the expression for the ratio of the diffusion coefficients be-
comes

D0

Deff
= 1 +

�04�2Cp
2�ap

4

�1 + �� − 1�
ap

2

ac
2�2 ln��2 + 1

�2 − 1
�L2

ac
. �29�

Typically, the stiffness of a diffusing protein will be signifi-
cantly larger than that of the membrane. In the limit ��1,
the resulting effective diffusion coefficient is given by the
relation

D0

Deff
= 1 + �04Cp

2� ln��2 + 1
�2 − 1

�L2ac
3. �30�

Equation �28� shows that a nonzero spontaneous curvature
Cp is crucial in order to have an influence on the diffusion
coefficient of the protein. Within our model, a mere differ-
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ence in the bending rigidity of the membrane and the protein,
i.e., ��1, does not lead to an altered diffusion coefficient.

Before testing our expression by comparing it to simula-
tions, we will discuss two limiting cases for Eq. �28�. With-
out altering the general conclusions, we will give this discus-
sion only for a single k mode. As was expected, our
expression reveals an effective diffusion coefficient that al-
ways has an upper bound of D0. For very small ratios �0 /	
�	�	�k��, i.e., if the membrane is much more mobile than
the protein, the reduction of the effective diffusion coeffi-
cient is linear in this ratio Deff /D0�1− �Bk�2�0 /	. The free
mobility of the protein dominates its effective movement.
The influence of the membrane is weak since it can adjust
quickly to the position of the protein. In this situation, our
approximation that the system’s energy is always close the
minimum is fulfilled and our expression will serve as a very
good estimate. For the limit in which the membrane moves
much slower than the particle, which corresponds to the sce-
nario of diffusion in an �almost� fixed periodic potential, our
expression predicts the asymptotic behavior Deff /D0
��Bk�−2	 /�0. Thus the movement of the protein is mainly
dominated by the membrane mobility such that it is strongly
slowed down. However, if the diffusing particle effectively
sees a fixed energy landscape, the stochastic motion enables
the protein to hop from one energy minimum to another,
such that our previous approximation that the protein always
stays very close to the position of the instantaneous energy
minimum may no longer be valid.

B. Temporal decay of membrane height correlations

Using the equations of motion �6� and �7�, a calculation of
the full height correlation function h�k , t�h�k� , t��� is not
feasible analytically. We rather determine this quantity from
our simulation scheme. Nevertheless, in order to gain an un-
derstanding of the possible contributions to the correlation
function, it is instructive to consider the special case of equal
bending rigidities of the particle and the membrane, �=1.
The general solution of the Langevin Eq. �7� is then given by

h�k,t�=h�k,0�e−t/�M�k�

+e−t/�M�k��
0

t

dt�et�/�M�k����k,t��−
Cp�ap

2G�k�
k2�M�k�

e−ik·R�t���,

�31�

with the k-dependent membrane time scale

�M�k� � 4/��k3� . �32�

Using the fluctuation-dissipation theorem �9� and assuming
that the particle diffuses on time scales much larger than
�M�k�, the height correlation function is given by

h�k,t�h�− k,t��� =
L2

��k4 �e−�t−t��/�M�k�

+ ����ap
2Cp

2G�k�G�− k�e−�t−t��/�D�k�� ,

�33�

with the diffusive time scale

�D�k� � �Deffk
2�−1. �34�

In order to arrive at Eq. �33�, we use exp�−ik · �R�t�
−R�t�����=e−�t−t��/�D�k� which follows for diffusive motion of
the protein with an effective diffusion coefficient Deff.

Equation �33� shows that the dynamics of the height cor-
relation function of the membrane is determined by the two
time scales present in the system: the membrane time scale
�M�k� and the diffusive time scale �D�k�. Our calculations
assumed �M�k���D�k�, thus, the decay of height correlations
for small times t− t� will be dominated by the membrane
dynamics while for large times, the diffusion of the particle
takes over. While our calculation is strictly valid only in the
case of �=1, the qualitative behavior persists also for the
case ��1 as will be shown when we present simulation
results. Note that the naive usage of an effective binding
rigidity �eff�k� would lead to a single time scale for each
mode k. Since the properties of the system are clearly domi-
nated by two time scales, the concept of �eff�k� is only ap-
plicable for properties that are not time dependent.

IV. SIMULATIONS

A. Scheme

Our simulation scheme comprises the numerical integra-
tion of the two coupled Langevin equations �6� and �7�.
However, the equation of motion given for the protein in Eq.
�6� neglects that the particle actually diffuses along the mem-
brane, in other words a curved surface. The shape of the
membrane influences the Langevin equation, the exact form
of which is given in Refs �25,27�, and used in our simula-
tions. Thus the free diffusion coefficient D0 used in the simu-
lations is slightly larger than the value of Dp in Eq. �6� �35�.

The membrane is mapped on a square N�N lattice such
that the length of the system is L=N� with the lattice spacing
�. The membrane shape is evolved in time by a time discrete
version of Eq. �7� in Fourier space. This part of the scheme is
an extension of the Fourier space Brownian dynamics simu-
lation method introduced by Lin and Brown �39–41�.

After every update of the membrane shape, the position of
the particle is altered by using a discrete version of Eq. �6�.
However, the particle’s position is not evolved on the lattice.
The membrane height at the particle position that enters in
the equation of motion is determined through linear extrapo-
lation from the height at the four nearest-neighbor lattice
sites. The shape of the membrane in real space h�r , t� is
determined by use of fast Fourier transforms implementing
the FFTW library �42�. For a more detailed account of the
simulation scheme we refer the reader to refs �25,27�.

All simulation results presented in this paper were per-
formed on a 64�64 lattice with a lattice spacing of �
=10 nm. The radius of the protein is set to ap=2�. The fluid
surrounding the membrane is water with a viscosity of 
=10−3 kg / �ms� or =2.47�10−7 s / ���2� in the units of our
model at T=300 K. The discrete integrations of both mem-
brane shape and particle position are performed with a time
step of �t=10−9 s that is significantly smaller than the
smallest time scale �M,min in the system. If not stated other-
wise, the diffusion coefficient of the protein is set to D0=5
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�10−8 cm−2 /s=5�104�2 /s. This ensures that the mem-
brane time scale is always smaller than the diffusive time
scale �M�k���D�k� as is the case in real biological systems.
Simulation runs were performed with 8�106 integration
steps resulting in trajectories that last for 8 ms, which is
approximately 5 times the longest membrane time scale
�M,max. The graphs presented in the following are the results
of averaging over a minimum of 500 independent trajecto-
ries, where the first 106 time steps were not taken into ac-
count in order to ensure equilibration of the membrane con-
figuration and the particle position relative to the membrane
shape.

B. Effective diffusion coefficient

To test our explicit expression �25�, we have performed
elaborate simulations using the scheme described in the pre-
vious section. In Fig. 1, we present the resulting Deff /D0 as a
function of �� with the ratio of protein area to system size �,
Eq. �4�, and the ratio of the protein to membrane bending
rigidity � for three different protein mobilities. The detailed
parameters of the simulations are given in the figure caption.
The comparison of the simulation results and the correspond-
ing analytical expression shows very good agreement for all
the chosen parameters. Since the simulations were all per-
formed with ����−2=0.04, we are well within the limits,
where we expect our analytical result to hold. These simula-
tion parameters were chosen because they represent realistic
parameters for biological systems. We thus conclude that our
approach to determining the reduction of the effective diffu-
sion coefficient will be of use in experimental studies.

In the following, we will quantitatively analyze the con-
tributions of the correlation functions entering the effective
diffusion coefficient. The mean squared displacement
�R2�t�� for the diffusing protein is formally given by inte-
grating Eq. �6� twice in time

�R2�t�� = �
0

t

d��
0

t

d����R��� · ���R�����

= �
0

t

d��
0

t

d����p
2f��� · f����� + ���� · ������

+ �pf��� · ������ + �p���� · f������ , �35�

with the conservative force f�t��−�RH�h ,R� that the mem-
brane exerts on the protein. Thus the mean squared displace-
ment has several additive contributions. Since the effective
diffusion coefficient follows from the slope of the mean-
square displacement as a function of time via �R2�
�4Deff

MSDt, also the diffusion coefficient has various additive
contributions. In Fig. 2, we display the simulation results for
the various parts of the mean squared displacement for a
chosen set of parameters. The correlations of the stochastic
force acting on the particle lead to a 4Dpt behavior as is
expected from the fluctuation-dissipation theorem of Eq. �8�.
As we have argued before, the slope of the particle’s mean
squared displacement as a function of time is smaller than
4Dp, hence, one of the additive terms must be negative.
However, the force correlations f��� · f����� obviously also
lead to an additive contribution, which we find to be quite
small for the parameters of our simulations. Due to causality
correlations f��� ·������ with ���� must be zero, such that
the remaining correlations ����� · f���� are the cause of the
reduction of the diffusion coefficient, as we clearly see from
the simulation results. This contribution expresses the reac-
tion of the membrane to the random force acting on the pro-
tein: if the random force moves the particle during a small
discrete time step, the interaction of the protein with the
membrane will slightly change the shape of the membrane
during the next time step such that the system comes closer
to the energy minimum. However, it cannot be reached dur-
ing such a short time, leading to the membrane “pulling
back” the protein to its initial position before the random
movement. This explains the sign of the corresponding cor-
relation function. An important aspect here is that the mem-
brane shape reacts to the movement of the protein. If the
membrane shape evolves independently from the particle po-
sition, these correlations do not exist leading to an increase
in the effective diffusion coefficient �24,27�.

C. Membrane height correlations

In the following, we will elucidate that our simulation
results for equal bending rigidity of membrane and protein,
�=1, agree very well with the analytical expressions given in
Eqs. �3� and �33�. Furthermore, we will show that the quali-
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tative features of these equations are also observed in the
more general case ��1.

In Fig. 3, we present the height correlation spectrum
h�k�h�−k�� as a function of k for �=1 and different mem-
brane bending rigidities � and spontaneous curvatures Cp of
the protein. In order to focus on the influence of the protein,
we have normalized h�k�h�−k�� by the spectrum of a bare,
protein-free membrane. While the symbols represent results
from the simulations, the solid lines follow from Eq. �3�
using the Gaussian weighting function G�r−R� given in Sec.
II. The influence of the protein is most pronounced for small
wave vectors k or large length scales and decreases with
increasing k to the value of the bare membrane without pro-
tein. Membrane fluctuations on length scales significantly
smaller than the inclusion’s size are not influenced by the
interaction of the protein with the membrane. Comparing
simulation results to the analytical expression �3�, we find
that the agreement is very good as was of course expected. In
Fig. 4, we plot the effective bending rigidity �eff�k� as a
function of k as determined from the height correlations that
result from simulations with a constant spontaneous curva-
ture Cp and membrane bending rigidity �, but different bend-
ing rigidity ratios �. For �=1, the simulation result agrees

very well with Eq. �5�. With increasing the stiffness of the
particle, we find that the qualitative behavior remains similar,
however, �eff is even more reduced. Effectively, an increase
in the bending rigidity of the protein leads to a softening of
the system. Our results indicate that �eff�k� saturates with
increasing �. To corroborate this, assumption simulations
with even higher � would need to be performed, but have
turned out to be very demanding computationally.

We now turn to the temporal decay of height correlations.
In Fig. 5, we display h�k , t�h�−k ,0�� as a function of time
for two arbitrary wave numbers k. The main plot considers
�=1, the inset �=6. Equation �33� suggests that the two
relevant time scales in the system, which are well separated
in our calculations, become observable: for small times, the
decay is dominated by the membrane time scale �M�k�, while
for larger times, the decay is predominantly influenced by the
movement of the protein and hence the corresponding time
scale is �D�k�. Regarding the simulation results, we see in-
deed that the behavior of the correlations is dominated by a
fast decay at small times and a slower decrease for large
times. While Eq. �33� is an approximate result only for �
=1, we find that this feature of two dominating time scales is
qualitatively also observed for ��1. The quantitative fit of
the small time behavior with an exponential decay with the
characteristic time �M�k� shows very good agreement for
both considered values of �. For ��1, the Hamiltonian of
the system �2� causes an additional contribution to the in-
verse characteristic time that depends on �. However, for the
parameters of our simulations, this contribution is obviously
negligible.

At large times, the decay is expressed through the time
scale �D�k� that is a function of the effective diffusion coef-
ficient Deff of the protein along the membrane. The typical
method to identify Deff is to regard the temporal evolution of
the mean squared displacement of the protein using the rela-
tion �R2��4Deff

MSDt, as explained above. Using the so-
determined value of the diffusion coefficient, we find for
large times that the results in Fig. 5 are well approximated by
an exponential behavior �exp�−t /�D�k�� for both �=1 and
�=6. Overall, for �=1, we observe that the behavior of the
height correlations is well described by Eq. �33�.
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V. DIFFUSION COEFFICIENT EXTRACTED
FROM MEMBRANE SPECTRUM

A. Determination of Deff from simulations

In the discussion of Fig. 5, we used the mean squared
displacement to determine the diffusion coefficient of the
protein. However, the exponential decay of large time height
correlations offers an alternative method to extract Deff. The
�D�k� resulting from exponential fits to the late time decay as
a function of k are plotted in the main graph of Fig. 6 for
�=1 but different � and Cp. Using the previously determined
value for the diffusion coefficient, we find a good agreement
with �D�k�= �k2Deff

MSD�−1 �solid lines�. Thus without prior in-
formation on the mean squared displacement of the proteins,
it is possible to identify Deff from the height correlations of
the membrane using the behavior of �D�k� as a function of
the wave number k. In the inset of Fig. 6, we plot Deff

M

��k2�D�k��−1 as a function of k. We find that the resulting
diffusion constant agrees very well with the diffusion con-
stant Deff

MSD.
While Fig. 6 only considers �=1, we will now show that

the characteristic time scales �M and �D can also be identified
for ��1. The inset of Fig. 7 displays �M�k� as a function of
k as determined from the exponential decay of the height
correlations at short times for different values of �. Apart
from �, the other parameters of the membrane and the par-
ticle are kept constant. We find that the results do not depend
on the rigidity of the protein. The dominant time scale for
short times is only determined by the properties of the mem-
brane and coincides with the correlation time of a freely
fluctuating membrane without protein. In the main plot, the
late time diffusive time scale �D is plotted as a function of k.
These results clearly depend on the rigidity of the protein,
but only because the diffusive motion is influenced by the
protein-membrane interaction. If we determine the effective
diffusion coefficient from the mean-square displacement and

compare the thus calculated �D �solid lines� to the simulation
results from the late time exponential fits to the height cor-
relations �symbols�, the agreement is again very good. Thus,
if we had not had the possibility to determine the mean
squared displacement of the protein, we could have deter-
mined Deff solely from the time dependence of the height
correlations.

B. Estimate of experimental feasibility

In the following, we will show that our suggested method
to determine the lateral diffusion coefficient of proteins from
height fluctuations in a membrane is experimentally feasible.
Height correlation functions can be determined by video mi-
croscopy as explained in the introduction. If �co�k� is the
crossover time from the decay of correlations caused by the
membrane dynamics to that dominated by the diffusive time
scale of the proteins, experiments must meet two conditions
in order for the crossover to become observable: on the one
hand, �co�k� must be larger than the temporal resolution of
the camera used in the experiment. Values given in previous
studies �15� are on the order of 0.03 s. On the other hand,
�co�k� must be smaller than the experimentally accessible
total time that is on the order of minutes. Since the crossover
time is a function of the wave vector, the restrictions for
�co�k� must, furthermore, be fulfilled for experimentally ac-
cessible wave numbers. The spatial resolution of video mi-
croscopy allows for k values smaller than approximately
4 �m−1.

If we have a general time-dependent function of the form
A exp�−at�+B exp�−bt�, with a�b, a good estimate for the
crossover time is given by �A+B�exp�−a�co�=B exp�−b�co�.
Within our model, the crossover time for �=1 is given by

�co�k� � � 1

�M�k�
−

1

�D�k��−1

ln�1

+ �����ap
2Cp

2G�k�G�− k��−1� . �36�

While lateral diffusion coefficients of proteins in membranes
are on the order of 10−8 cm2 /s �11�, the spontaneous curva-

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

τ D
[m

s
]

|k| ℓ

κβ = 5, Cpℓ = 1

κβ = 5, Cpℓ = 0.5
κβ = 10, Cpℓ = 1

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
e
ff
/
D

0
|k| ℓ

FIG. 6. �Color online� Diffusion dominated decay time �D�k� as
a function of k for �=1 and the given values for �� and Cp. Sym-
bols represent simulation results derived from fitting height corre-
lation functions at later times; solid lines display the theoretical
time scale using the effective diffusion coefficient determined
through the mean squared displacement of the protein. In the inset,
the effective diffusion coefficient determined from the long-time
decay using Deff

M ��k2�D�k��−1 is plotted as a function of k �sym-
bols�. Horizontal lines give Deff

MSD determined from the mean
squared displacement.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

τ D
[m

s
]

|k| ℓ

γ = 1

γ = 4

γ = 8

10
−4

10
−3

10
−2

10
−1

0.2 0.4 0.6 0.8 1

|k| ℓ

γ = 1

γ = 4

γ = 8

τ M
[m

s
]

FIG. 7. �Color online� Diffusion time �D�k� as a function of k for
the given values of �. All results apply for Cp�=1 and ��=5.
Symbols result from simulations while solid lines are given by
�Deff

MSDk2�−1. Inset shows the corresponding membrane time scale
�M�k� determined by fitting the initial decay of the height correla-
tion function �symbols� and given theoretically �solid line�.

DIFFUSING PROTEINS ON A FLUCTUATING MEMBRANE:… PHYSICAL REVIEW E 81, 031903 �2010�

031903-9



ture is not so well determined. In Fig. 8, we display the
crossover time �co�k� as a function of the wave number for
different protein densities � and D=10−8 cm2 /s, ��=10,
and ��apCp=1. For the regarded protein densities, we find
that for small wave numbers, �co becomes larger than the
typical temporal resolution of experiments. We find that for
wave numbers that lie within the experimental range, it
should be possible to observe the two characteristic time
scales. Thus, the determination of the lateral diffusion coef-
ficient from the diffusion dominated decay of membrane
height correlations should be feasible. However, the interest-
ing wave-number range is reasonably narrow, since �co is
strongly increasing for smaller k. Note that Eq. �36� is only
valid for the situation of equal bending rigidity of the protein
and the membrane. In general, this is obviously not the case,
however, the height correlations displayed in Fig. 5 for �
�1 let us assume that the crossover time is only weakly
influenced by the bending rigidity of the protein and that our
estimate remains valid.

VI. CONCLUSIONS

In this paper, we have considered the influence of a pro-
tein interacting with a fluctuating membrane via its bending
rigidity and spontaneous curvature on both the dynamics of
the protein and the membrane. The quantities we have
looked at in details are the lateral diffusion coefficient of the
protein and the height correlations of membrane fluctuations
by use of analytical calculations and Langevin simulations.
We argue that the lateral diffusion coefficient of a protein
that interacts with the membrane is always reduced com-

pared to its bare diffusion coefficient as long as there are no
external driving forces or active processes. Using a path-
integral approach, we could derive an analytical expression
for this reduction that is valid within the lowest order of a
����−1 expansion. Our simulations with parameters that re-
semble those of real experiments show a wide applicability
of this expression. In addition, a closer look at the correlation
functions that contribute to the reduction of the diffusion
coefficient shows that the correlations between the stochastic
force acting on the protein and the response of the membrane
to the movement of the protein are responsible for the reduc-
tion.

The diffusion of the protein is obviously correlated with
the height correlations of the membrane. The determination
of the height correlations for the case of equal bending rigid-
ity of the protein and the membrane reveals that the protein-
membrane interaction has a significant influence compared to
a free membrane. The most predominant feature is that the
temporal decay of correlations does not only display the time
scale one would expect from the membrane, but that the
diffusive time scale of the influencing protein becomes im-
portant. In realistic biomembrane systems, these two time
scales are well separated such that a crossover from the ini-
tially fast decay of membrane fluctuations to the slower pro-
tein diffusion dominated decay is likely to be observed in
experiments. Since the decay at later times is directly related
to the effective diffusion coefficient of the protein, we sug-
gest that the measurement of membrane fluctuations might
actually provide a means to determine the lateral diffusion
coefficient of the inserted proteins.

Our systematic approach to lateral diffusion of a protein
interacting with the shape of the membrane and the related
influence on the membrane fluctuation spectrum can be ex-
tended in various directions. The first question arising from
our study is to work out corrections to the ����−1 expansion
and to estimate their relevance. A further perspective result-
ing from our analysis is the interesting limit 	 /�0→0 when
the protein effectively moves in a fixed membrane configu-
ration. This situation is interesting theoretically, since the
diffusing particle no longer “drags along” the membrane, but
is hindered in its movement by potential barriers caused by
the interaction of the particle with the membrane. Finally,
while we have so far only considered membranes that are on
average flat, the extension to ruffled membranes poses an
interesting challenge with significant relevance for biological
membranes such as the endoplasmic reticulum or the cristae
in mitochondria.
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